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A theoretical approach for the thermal expansion

behavior of the particulate reinforced aluminum

matrix composite
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Microstructural observation revealed that the increase in the volume fraction of SiC
particles lowers the coefficient of thermal expansion (CTE) of the composite, and the CTE
of the metal matrix composites is proportional to the size of the Si phase. To analyze the
thermal expansion behavior of aluminum matrix composites, a new model for the CTE of
the mono-dispersed binary composite on the basis of Ashelby’s cutting and welding
approach was proposed. In the theoretical model, it was considered that during cooling
relaxation of residual stresses could create an elasto-plastic deformation zone around a SiC
or Al2O3 particle in the matrix. The size of reinforced particles and other metallurgical
factors of the matrix alloy and composite were also considered. In this model, the
interacting effect between the reinforced hard particle and the soft matrix is considered by
introducing the influence of the elasto-plastic deformation zone around a particle, which is
distinguished from the previous models. It was revealed that the CTE of the composite are
influenced by the particle volume fraction, the elastic modulus and Poisson’s ratio as well
as the elasto-plastic deformation zone size and the particle size.
C© 2001 Kluwer Academic Publishers

Nomenclature
a constant = rp/r
b Burger’s vector
C constant
Em Young’s modulus
Gm the shear modulus of matrix
Km the bulk modulus of matrix
Kp the bulk modulus of particle
�T temperature range measuring the CTEs
�T0 the difference between the fabricating

temperature and room temperature
P pressure
r the radius of particle
rp effective plastic region
t interfacial thickness
V volume fraction
Z the size of the elasto-plastic zone =

r

[
(αm − αp)�T0 Em)

(1 − νm)σy

] 1
3

α the linear coefficient of thermal expansion
ε strain
εd a released strain due to the plastic

deformation of the matrix

∗Author to whom all correspondence should be addressed.

σy yield strength
ρ dislocation density due to the thermal

expansion mismatch
νm the Poisson’s ratio of matrix
νp the Poisson’s ratio of particle

Subscripts
i interface
m a constrained matrix
m′ an unconstrained matrix
p ceramic particle
t an entire composite

1. Introduction
In many industrial applications [1–6], one of the impor-
tant properties of a material is the coefficient of thermal
expansion (CTE) related with the dimensional stability
of the material under a dynamic elevation, descent, or
hysteresis of temperature. However thermal expansion
behaviors in alloys or composites have not yet been
well understood from a viewpoint of macroscopic or
microscopic metallurgical phenomena.
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The effects of the particle size on the CTEs of alloys
and composites have been reported recently [7–9]. It
has been demonstrated that a composite with a smaller
particle has a lower linear CTE. The Al/SiCp compos-
ite fabricated by S. Elomari and co-workers [7] were
shown to decrease in the CTEs with decreasing the par-
ticle size. It was suggested that the effect of the particle
size on the CTEs be due to silicon oxides with a very
low CTE formed on the surface layers of SiC particles.
Also, in the hypereutectic Al-Si alloy fabricated using
various fabrication techniques [8] it was shown that the
CTEs of alloys decreased with decreasing the size of the
crystallized Si phase. Here, it must not be influenced
by oxidation of Si because the Si phases are crystal-
lized in the melt of the Al alloy for solidification. As a
similar effect, Ma and co-workers [9] observed that the
size of the particle had a small effect on the CTE of the
2024 Al/SiCp composite.

To analyze the thermal expansion behaviors of alloys
or composites, several theoretical models have been
derived in many literatures [10–17], and their simple
equations have been used to predict the CTEs of com-
posites and to design composites with low CTEs. Un-
fortunately, however, the results predicted by these ap-
proaches are poorly matched to the experimental results
obtained for practical composites. It seems that the ear-
lier models did not consider various metallurgical fac-
tors such as the sizes and shapes of reinforcements or
interfacial conditions between constituents.

The CTEs of composites must be influenced by
interfacial conditions, i.e. tightly bonded, debonded,
coated, or oxided states between constituents. In Yih
and Chung’s investigation [18], it was shown that the
composite reinforced with the Cu-coated SiC whisker
had a lower linear CTE than the corresponding com-
posites with the uncoated one.

Also, since the interface between the reinforcement
and the matrix in a composite is considered to be inco-
herent, it is expected that dislocations be generated due
to the thermal mismatch between them during fabrica-
tion. The degree of dislocation generation may depend
considerably on the size of reinforced particles. Re-
cently, from studies on Al/SiC composites, Arsenault
and coworkers [19] showed that dislocations were gen-
erated from the interfaces between the Al matrix and
SiC particles as a result of the stress induced by a high
thermal mismatch during cooling.

During the cooling of composite, residual stresses
can be introduced into each constituent due to a high
thermal mismatch between a ceramic particle and a
metal matrix. These stresses can be also released by
creating a plastic deformation zone in the metal ma-
trix around the particle. The plastic deformation due
to the high thermal mismatch has been analyzed via a
continuum mechanics model [20–22] as well as a dis-
location loop-punching model [23–25]. Also, Lee and
co-workers [20] proposed that a particle size-dependent
yield stress could be deduced from the Ashelby-
Johnson model [24] for dislocation nucleation.

The purpose of this study is to understand the ther-
mal expansion behavior of the Al-Si/SiCp composite.
Thus, the primary aim of this study is to develop a new

model for predicting the linear CTE of the composite
with mono-dispersed spherical particles on the basis
of Ashelby’s cutting and welding process [26, 27]. In
order to develop the theoretical model it will be consid-
ered that relaxation of residual stresses during cooling
can create an elasto-plastic deformation zone around
a SiC or Al2O3 particle in the matrix. The size of the
reinforced particles and other metallurgical factors of
matrix alloys and composites will also be considered.

2. Theoretical approach
2.1. Basic assumptions
To derive a mathematical expression to predict the lin-
ear CTE of Al-Si alloys with two phases or Al-SiCp
composites with mono-dispersed particles, the follow-
ing basic assumptions were made.

1. Each SiC or Si particle is treated as an elastic
sphere embedded in an infinite soft matrix, resulting
in an axially symmetrical stress distribution around the
particles.

2. There is no chemical reaction between phases at
the fabricating temperature of alloys or composites. The
interface between the matrix and the reinforced phase
is in a tightly bonded state.

3. In order to avoid the complexity of model, in the
first place, interfacial problems between the matrix and
the reinforced phase will not be considered. These prob-
lems will be considered later.

4. The reinforced hard particles are uniformly dis-
tributed with a mono-size in the soft matrix, and the
chemical composition of the matrix is homogeneous.

5. Composites or alloys are assumed to be in a met-
allurgical stable state. No physical or chemical change
in structure occurs during exposure to an elevated tem-
perature or thermal cycles. The influence of the phase
change is not included in this analysis.

6. No temperature gradient is present throughout the
entire composites or alloys.

2.2. Development of CTE model
When the Al/SiCp composite is cooled or heated to a
proper temperature, an Al matrix in the vicinity of the
interface between the Al matrix and SiC particles may
have entirely different physical, mechanical, and ther-
mal properties from the Al matrix far away from the
interface. It is due to the high thermal expansion mis-
match between them. If it is given by interfacial char-
acteristics of tight bonding and high thermal mismatch
between the particle and the matrix during cooling, a
considerable residual stress would be generated at room
temperature. Therefore, it may be said that cooling will
induce constrains in the matrix in the vicinity of a par-
ticle. But the matrix far away from the particle may
not be influenced by the ceramic particle, and for cool-
ing must be constrained only by the thermal extraction
for itself. Therefore, we will assume that the matrix in
the vicinity of the particle is a constrained matrix, and
the one far away from the particle is an unconstrained
matrix.
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Figure 1 The composite separated into each region at the final temperature: (a) the entire composite (b) the elastic matrix region (c) the elasto-plastic
matrix region (d) the elastic ceramic particle region.

In view of internal energy elastic and plastic strain
energies must be distributed in each direction across
the interface. Namely, the metal matrix in the vicin-
ity of a spherical ceramic particle has both elastic and
plastic strain energies [28–31], but the unconstrained
matrix has only an elastic strain field. It can be re-
garded an entire composite as the sum of an elastic
region in the unconstrained matrix, an elasto-plastic re-
gion in the constrained matrix, a high elastic region
in the ceramic particle, and an interfacial region be-
tween the matrix and the particle. However, according
to our third assumption, the influence of an interfacial
region will be considered later. Consequently, an ap-
proach to analyze the CTE of composite can be made
by extracting and reinserting these regions as shown in
Fig. 1. Fig. 1 shows that the composite can be separated
into each region. Fig. 1a–d represent the unconstrained
matrix, the constrained matrix, and the unconstrained
particle, constrained particle respectively. This new ap-
proach has been made on the basis of the Ashelby’s
cutting and welding process [26, 27]. In their approach
only an interaction between the constrained matrix and
the ceramic particle was considered. However, in our
approach it will be considered that the matrix is sub-
divided into the regions with the constrained elasto-
plastic matrix and the unconstrained elastic matrix.

Next, the linear CTE of the composite can be theoret-
ically calculated by considering an interaction among
each subdivided constituent. That is, the linear CTE
of the entire composite will be set by the following
separation:

(The CTE of the entire composite)
= (The contribution of the elastic matrix region) +
(Contributions of an interaction between the elasto-
plastic matrix region and the particle region with the
higher elastic property).

Therefore, the separated constituents in the compos-
ites may be able to be set independent, and the CTEs of
the entire composite can be expressed by introducing
the rule of mixtures, as shown in the following equation:

αt = αm′ Vm′ + α(p⇔m)V(p+m) (1)

where the identification for all symbols and sub-
scripts will be shown in Nomenclature later. Each vol-
ume fraction of the constituents can be expressed by
Vtotal = Vm′ + V(p+m) = 1.

Vm′ = 1 − (Vm + Vp), Vm =
[(

Zp

r

)3

− 1

]
Vp (2)

where Zp represents the size of the elasto-plastic zone
created by the thermal expansion mismatch between
the soft matrix and a hard particle during cooling of the
composite, and it was reported by Mortensen et al. [29]
and Kim et al. [28].

The elasto-plastic matrix can be separated from the
elastic matrix by introducing an elasto-plastic zone in
the entire matrix of the composite. Therefore, first, the
linear CTE can be calculated by considering the inter-
action between an elasto-plastic matrix and a ceramic
particle. Next, the interaction between the elasto-plastic
matrix around the ceramic particle and the uncon-
strained elastic matrix around the elasto-plastic matrix
can be considered. Since the elasto-plastic matrix con-
tains both the elastic and the plastic strain energy, in
order to develop a CTE model these properties should
be considered. Assuming that the elasto-plastic region
contains an effective constrained matrix, the elastic
sphere should interact directly with the severely con-
strained inner matrix, region II-a in Fig. 2 a and indi-
rectly with the very weakly constrained outer matrix,
region II-b in Fig. 2a. In order to simplify this concept
let’s assume that the elastic particle and the severely
constrained matrix particle with a spherical shape, are
embedded in the very weakly constrained elastic matrix
as shown in Fig. 2b.

Now, it is possible to consider the interactions not
only between the elasto-plastic matrix and the ce-
ramic particle but also between the elastic matrix and
the plastic matrix in the elasto-plastic region. If the
composite fabricated at a high temperature is heated
again to a certain high temperature, the ceramic par-
ticle and the matrix will be expanded with the other
constrained. Arriving at the final temperature, the in-
terface between them must be located at an equilibrium
point (x = c) as a result of the interaction between these
two spherical particles and the influence of the sur-
rounding matrix as shown in the schematic diagram of
Fig. 3.

For a decrement of temperature, dT , the thermal
strain of a material is expressed by αdT , where α

is the linear CTE. This thermal strain occurs without
any applied stress. The ceramic particle and the ma-
trix would be strained by αpdT and αmdT for the same
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Figure 2 Schematic diagrams showing the interactions among the ceramic particle, the particle matrix, and the elastic matrix in the elasto-plastic
zone. (a) an original state (b) a modified concept.

Figure 3 A schematic diagram showing an interaction between the elas-
tic ceramic particle and a plastic matrix particle in the surrounding elastic
matrix.

temperature change, but in general the quantity of these
strains would be unequal. Another strain may be cre-
ated due to the relaxation of the stress during cooling.
This strain εd can be expressed by introducing creation
of dislocations. If εp and εm denote the unconstrained
states in the ceramic particle and the matrix, respec-
tively, these strains can be expressed as follows:

εp = αp�T (3)

εm′ = εm + εd = αm�T (4)

To make an expression for the plastic strain in the
elasto-plastic strained matrix, a relationship between a
dislocation density and a strength increment will be
introduced. Namely, on the basis of the dislocation
strengthening theory [32], the increment of the yield

strength due to the dislocation generation is given by
�σy = C · G · b · √

ρ. Also, the stress relief process
due to the thermal mismatch may be involved in the
generation of prismatic loops or tangled dislocations
[31]. In case of well-bonded composite relaxation of
the residual stress due to the big thermal mismatch dur-
ing cooling can be disclosed by the plastic deformation
zone in the soft metal matrix around a ceramic parti-
cle. Accordingly, the interaction between them should
be considered by introducing the elasto-plastic zone.
At room temperature, the strain distribution in the ma-
trix must be modified by a stress increment due to the
high dislocation density near the interface. Hence, to
ensure the required continuity for the interaction be-
tween them, a released strain εd due to the plastic de-
formation of the matrix must be superimposed on the
thermal strain. Therefore, Equation 4 the expression for
the strain in the matrix due to thermal mismatch can be
replaced by

εm = αm�T − εd = αm�T − �σy

Gm

= αm�T − C · b ·
√

(αm − αp)�T06
√

2

b(Z3 − r3)/r2
(5)

Now, it is possible to consider a situation that the
ceramic particle and the matrix with a spherical shape
are expanded with the elevation of the temperature in
Fig. 3. If one raises the temperature in such a situation
as shown in Fig. 3, equilibrium state such as at x = c
will be established for a final boundary between the
hard particle and the matrix particle. From the view-
point of the plastic matrix particle located on the right
hand side in Fig. 3, the solid lines represent the final
displacement constrained by the elastic ceramic parti-
cle and the surrounding elastic matrix simultaneously.
Details for the evolved sequence of equations are de-
scribed in Appendix.

Finally, considering the equilibrium state of the
total strain modified by the volume fraction of each
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constituent in the composite at a distance of x = x , the
relationship that εmVm is equal to −εpVp will be ob-
tained. Thus, the linear CTE in the region with the elas-
tic ceramic particle, the plastic matrix particle, and the
surrounding elastic matrix can be expressed by each
equation. Consequently the linear CTE of the entire
composite of Equation 1 can be rewritten as follows:

αt = αm′ Vm′ +α(p⇔m)V(p+m) = αm ·Vm′ +
A · Vp · αp + B · Vm · αm − B · Vm · C · b

�T

√
(αm − αp) · �T0 · 6

√
2

b · (Z3 − r3)/r2

A · Vp + B · Vm
(6)

where

A = 4a3Gm

3Kp + 4a3Gm
, B = 4Gm

3Km + 4Gm
,

and

Z = r · 3

√
(αm − αp)�T0 Em

(1 − νm) · σy
.

The developed CTE model represented by Equation 6
is distinguished from the previous models. In this model
the interaction between the hard particle and the soft
matrix during cooling was considered by introducing
the concepts of the plastic property of the matrix and
their contributions. Note that the particle volume frac-
tion, Young’s modulus and Poisson’s ratio as well as the
plastic zone and the particle size may affect the linear
CTE of the composite.

However, despite the development of the new CTE
model considered by introducing the elasto-plastic
zone, the interfacial characteristics between the ceramic
particle and the metal matrix was not considered in this
model. Also the variation of the CTE of the composite
with the particle size should be revealed later.

2.3. Extension of the model
No interfacial effect on the CTE of the composite has
been applied as yet; we have considered only the inter-
action between the elastic particle and the matrix arising
from the thermal mismatch between them during cool-
ing. Maybe we can consider the effects of interfaces on
the CTE of the homogeneous composite through the
extracting and inserting procedure. The apparent den-
sity of a composite with a higher volume fraction, a
smaller particle, and more phases, may be smaller than
the theoretical one. Since it seems to be related to the
introduction of defects such as phase boundaries and
dislocations, probably a relative interfacial effect may
be more important. Therefore, Equation 6 should be re-
placed by the following equation in which an interfacial
effect is considered by the rule of mixtures through the
extracting and inserting procedure.

αt = αmVm′ + α(p⇔m)V(p+m) ± αiVi (7)

where the third term, αiVi, indicates the influence of an
interfacial region, and the positive or negative sign is
determined by the interfacial characteristics. If the in-
terfacial region plays an important role of a sink for
thermal expansion, the sign should be negative. For
example, the apparent linear CTE of composite with
the looser phase boundaries may be measured by the

lower value than that of composite with the tighter phase
boundaries. On the other hand, the positive sign may ap-
ply to the composite with a chemical reaction between
the matrix and the particle resulting in the formation
of an intermetallic compound with a relatively com-
pact lattice structure [34]. Since the chemical reaction
between them decreases the volume of the matrix and
the reinforcement, their effective volume may be deter-
mined by chemical elements in the reaction zone. Also
if cooling is performed, a crack may be initiated due to
the large thermal mismatch in this reaction zone with a
brittle phase. Because this chemical reaction zone may
absorb the thermal stress due to cooling, the elasto-
plastic region in the matrix around the reinforcement
must rarely form.

Because the linear CTE, αi, of the interfacial region
may differ from those of the matrix and the particle,
it is very difficult to consider this problem. Assuming
that the interfacial region may play an important role of
a sink for the thermal expansion, it will be reasonable
to subtract the volumetric quantity of the interfacial
region from the volume calculated by considering the
entire composite ignoring the region.

3. Results and discussions: Verifying the
developed CTE model

To verify the validity of the newly developed model,
the CTEs for Al-Si binary alloys were calculated for
various sizes and weight percents of the crystallized Si
particles in the temperature range from 293 K to 573 K
on the basis of Equation 6, and then compared with the
previous experimental results. The calculated and ex-
perimental results are shown in Fig. 4. Table I shows
the metallurgical input parameters and variables used in
calculations from Figs 4 to 7. The symbols in Fig. 4 rep-
resent the linear CTE measured by Thermo-Mechanical
Analyzer for the hypereutectic Al-Si industrial alloys
(JIS A390) that have been fabricated by various pro-
cessing technologies followed by the T6 heat treatment
[8]. The lines in Fig. 4 represent the linear CTEs cal-
culated by the developed model for the Al-x wt.%Si
binary alloys. It shows that the theoretically calculated
results are slightly deviated from those measured ex-
perimentally. These deviations may be owing to the
assumptions such as the spherical shape, no interfa-
cial volume, and no precipitation effect. Despite these
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T ABL E I Input data of metallurgical parameters for calculating the CTE of Al alloys and composites

Parameters Al(pure) Al(6061) Si SiCp Al2O3

The linear CTE (α, × 10−6 µm/µmK) 25.3 25.4 4.1 4.7 7.2
Bulk modulus (K , GPa) 69 78.9 93.3 227.3 270.3
Shear modulus (G, GPa) 26 26.5 — — —
Poisson’s ratio (ν) 0.33 0.20 0.17 0.25
Yield strength (σy, MPa) 28 145 — — —
Burger’s vector (µm) 0.283 × 10−3 — — —
Particle diameter (µm) — 3.6, 6, 11, 12 10, 20, 40 12, 26
Constant (C) 1.25 — — —

Figure 4 Calculated and measured CTEs of Al-x wt.%Si alloys.

deviations, it seems that the calculated CTEs agree well
with the measured values.

To verify the validity of our extended model, the cal-
culated CTEs have been compared with the reported
CTEs for binary composite. S. Elomari and others [7]
have measured the CTEs for the pure-Al/SiCp compos-
ite fabricated by the melt infiltration technique. In Fig. 5
the symbols represent the experimental values and the
lines represents the one calculated theoretically using
our extended model. Fig. 5 shows that the linear CTEs
calculated by our extended model agree pretty well with
their experimental values. Therefore, it seems that the
linear CTE of the composite with two phases is also
influenced by interfacial characteristics.

In order to satisfy the situation that the reinforce-
ment and the matrix are replaced by that with different
properties, it should also be investigated whether the
calculated CTEs agree with the experimental results
or not. Elomari and others [35] have reported the CTEs
measured for the rolled sheet of the 6061Al/Al2O3 com-
posite. In Fig. 6, the symbol represents the linear CTEs
measured experimentally by them for 10 vol.% and
20 vol.% Al2O3 reinforced composites, respectively,
and the lines show the linear CTEs calculated on the
basis of our developed model.

Figure 5 Calculated and reported CTEs of pure-Al/SiCp composites.

Figure 6 Calculated and reported CTEs of 6061Al/Al2O3 composites
in the temperature range from 298 K to 673 K.
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Figure 7 Comparison between the developed CTE model and previous
models for predicting the CTE of the Al/SiCp composite with two phases
in the temperature range from 298 K to 573 K.

Also, to understand the difference between the newly
developed model and the previous ones will be help-
ful in verifying the validity of our CTE model. Fig. 7
shows the results calculated on the basis of the mod-
els proposed by previous investigators [10–14] and that
developed in this study. Note that the size effect of the
reinforcement on the linear CTEs is taken into consid-
eration in our model. From the results shown in Fig. 7,
it appears that the linear CTE of the composite with two
phases depends upon the size of the reinforcement al-
though previous models cannot predict this effect. This
comparison suggests that the effect of the secondary
phase with different sizes on the linear CTE can be
considered and predicted in the new model.

4. Conclusions
To analyze the thermal expansion behaviors of Al-Si
alloys and composites, a new approach for the CTE
on the basis of Ashelby’s cutting and welding process
was made. In this theoretical approach, it was consid-
ered that relaxation of residual stress could create an
elasto-plastic zone in the matrix around a particle dur-
ing cooling. To simplify the development of the model,
an effective deformed area in the elasto-plastic zone
was assumed to be a spherical matrix particle, and it
was also assumed that this soft matrix particle be di-
rectly influenced by the reinforced particle when tem-
perature was elevated. To consider the contribution of
the interfacial characteristics between them, a new ex-
tended CTE model was also proposed, and it was ver-

ified by comparing the calculated values based on the
new model with the experimental results reported by
previous workers. We may conclude as follows:

1. A new theoretical approach for analyzing the ther-
mal expansion behaviors of alloys and composites with
two phases has been developed, an effect of the particle
size on the linear CTE is considered in this approach.

2. In an extended approach, it has been suggested
that the linear CTEs of alloys and composites are also
influenced by the interfacial characteristics between the
metal matrix and the reinforcement.

3. This CTE model reveals that the linear CTE of a
composite with two phases depends upon the size of the
reinforcement whereas previous models can not predict
this effect.

4. The CTEs of material systems with two phases
depend on various metallurgical parameters such as the
size of elasto-plastic zone, the size and shape of con-
stituent, and the interfacial characteristics as well as the
volume fraction of constituent, the elastic modulus, and
Poisson’s ratio.

Appendix
According to our assumptions, let’s consider a situation
that the ceramic particle and the matrix with a spheri-
cal shape are expanded with the elevation of the tem-
perature in Fig. 3. Assuming linear thermal expansion
and no shear stresses acting on these particles, the total
strain would be simplified by ε = ε11 + ε22 + ε33 = ε11
since ε22 = ε33 = 0. Also, the ceramic particle and the
matrix with a spherical shape will be constrained by
the elastic matrix around these particles. Because these
particles are in uniform hydrostatic compression, the
total stress acting on each particle can be expressed by
σ11 = σ22 = σ33 = σ . At the distance of x , therefore, the
strains acting on each particle can be expressed as

εp(x) = σ11 − νp(σ22 + σ33)

Ep
= (1 − 2νp)

Ep
· σp (1)

εm(x) = σ11 − νm(σ22 + σ33)

Em
= (1 − 2νm)

Em
· σm (2)

On the other hand, during the elevation of tempera-
ture, the stresses constrained by the outer elastic matrix
can be considered by terms of pressure as follows:

εp(x) = σ11 − νp(σ22 + σ33)

Ep
= (1 − 2νp)

Ep
· (−Pp) (3)

εm(x) = σ11 − νm(σ22 + σ33)

Em
= (1 − 2νm)

Em
· (−Pm)

(4)

In order to get Pp and Pm, interactions among the
elastic ceramic particle, the plastic matrix particle, and
the surrounding elastic matrix should be considered.
Assuming that the plastic property in the surrounding
elastic matrix can be ignored, then each particle in an
equilibrium state will behave like under the hydrostatic
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pressure. At x = c, hence, the displacement by expan-
sion of each particle due to the elevation of temperature
should be expressed as follows:

1. In case of the elastic ceramic particle with a spher-
ical shape

εp(x=c) = (1 − 2νp)

Ep
· (−Pp) + αp · �T (5)

2. In case of the plastic matrix particle with a spher-
ical shape

εm(x=c) = (1 − 2νm)

Em
· (−Pm) + αm · �T − C · b · √ρ

(6)

3. In case of the surrounding elastic matrix particle

If temperature is elevated, the constrained state, act-
ing on the surface of each spherical particle at x = c,
should be the principal stress state of isotropic tension
(σ11 = 2σ22 = 2σ33). Assuming that the plastic property
of the matrix around each particle can be ignored and
that the size of the ceramic particle and the matrix par-
ticle differ from each other, then a pressure effect will
be created due to the size difference. Again assuming
the relationship of rp = a · r at x = c is satisfied, the
strain acting on each particle can be expressed by the
following equations. This concept has been developed
by Tummala and Friedberg [12] using Timoshenko’s
analysis [33] which relates the principal stresses to the
pressure on the matrix due to the spherical particle.

A. In the surrounding elastic matrix interacting with
the elastic ceramic particle

εm′(x=c) = 1 + νm

2Em
·
(

1

a

)3

· Pp + αc · �T (7)

B. In the surrounding elastic matrix interacting with
the plastic matrix particle

εm′(x=c) = 1 + νm

2Em
· (Pm) + αc · �T (8)

In the composite, the above strain relationships must
be satisfied at the interfaces of the surrounding elas-
tic matrix, the elastic ceramic particle, and the plastic
matrix particle. For a composite with two phases, there-
fore, the pressure acting on each particle may be deter-
mined as follows, assuming that strains have continuity
across the surrounding elastic matrix and particles.

1. Equation 5 = Equation 7;

εp(x=c) = εm′(x=c); Pp = Pm′ (9)

2. Equation 6 = Equation 8;

εm(x=c) = εm′(x=c); Pm = Pm′ (10)

In order to get an expression of strains acting on each
particle as it is expanded to x = x , Pp and Pm of Equa-
tions 9 and 10 must be inserted into Equations 3 and 4,
respectively. Then, Equations 3 and 4 must be rewritten
as follows:

εp(x=x) = (1 − 2νp)

Ep
· (−Pp) = (1 − 2νp)

Ep

× (αc − αp) · �T(
1

a

)3

· (1 + νm)

2Em
+ (1 − 2νp)

Ep

(11)

εm(x=x) = (1 − 2νm)

Em
· (−Pm) = (1 − 2νm)

Em

× (αc − αm) · �T + C · b · √
ρ

(1 + νm)

2Em
+ (1 − 2νm)

Em

(12)

Considering the equilibrium state of the total strain
modified by the volume fraction of each constituent
in the composite at a distance of x = x , the relationship
that εmVm is equal to−εpVp will be obtained. Therefore,
the linear CTE in the region with the elastic ceramic
particle, the plastic matrix particle, and the surrounding
elastic matrix can be obtained. Finally, the linear CTE
of the entire composite can be rewritten as Equation 6
in the main text.
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